Journal of Organometallic Chemistry, 102 (1975) 345-351
© Elsevier Sequoia S.A., Lausanne - Printed ir. The Netherlands

SYNTHESIS AND STRUCTURE PROOF OF A NEW RING SYSTEM FROM THE REACTION OF DIIRONNONACARBONYL AND NAPHTHO[$b]$ CYCLOPROPENE

F.A. COTTON ${ }^{\star}$ and J.M. TROUP
Department of Chemistry, Texas A \& M University, College Station, Texas 77843 (U.S.A.)
W.E. BILLUPS*, L.P. LIN and C.V. SMITH
Department of Chemistry, Rice University, Houston, Texas 77001 (U.S.A.)
(Received January 28th, 1975)

Summary

The reaction of naphtho [b] cyclopropene with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ yields a yellow crystalline product, I, in 27% yield. The identity and structure of I were ascertained by spectroscopic, and especially X-ray crystallographic means. The product can be formally regarded as resulting from the addition of an $\mathrm{Fe}-\mathrm{C}$ bond of $\mathrm{Fe}(\mathrm{CO})_{5}$ across one edge of the three-membered ring of naphtho [b]cyclopropene. Thus, the iron atom is coordinated in a distorted octahedral fashion by four CO groups, the carbon atom of a carbonyl group at the 2 position of naphthalene and the carbon atom of a methylene group at the 3 position of naphthalene. The product, $\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}\right) \mathrm{Fe}(\mathrm{CO})_{4}$, crystallizes in space group $P 2_{1} / n$. The unit cell contains four molecules and has the dimensions $a=9.446$ (3) , $b=$ $6.383(2), c=23.464(4) \AA, \beta=91.58(2)^{\circ}$. Using a total of 1731 reflections for which $\left|F_{0}\right|^{2}$ exceeded 3 times the standard deviation of $\left|F_{0}\right|^{2}$ the structure was solved and refined to convergence using anisotropic temperature factors for all atoms to give discrepency indices of $R_{1}=0.064$ and $R_{2}=0.081$. The C-C distances in the naphthalene moiety agree very well with known values for naphthalene itself. The four Fe-CO distances are 1.815, 1.823, 1.831 and $1.844 \AA$, the $\mathrm{Fe}-\mathrm{CH}_{2}$ distance is $2.112(7) \AA$ and the $\mathrm{Fe}-\mathrm{C}(\mathrm{O})$ ring distance is $2.035(5) \AA$.

Introduction

The reactions of the iron carbonyls with strained ring systems has already been the subject of much study [1,2]. We report here the synthesis and structure of the novel product I, a compound of considerable intrinsic interest, which results from the reaction of $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ with naphtho [b] cyclopropene (II) [3].

(I)

Experimental
General. All melting points are uncorrected. Infrared spectra were recorded on a Beckman IR8 spectrometer as KBr plates. Proton magnetic resonance spectra were obtained with a Perkin-Elmer R-12 spectrometer in CCl_{4} or DCCl_{3} solution and results are expressed in parts per million downfield from internal TMS. Mass spectra were obtained with a double focusing C.E.C. 21-110B mass spectrometer.

Tetrahydrofuran was distilled from sodium-benzophenone ketyl immediately before use. Benzene was distilled from sodium wire and stored over 4A molecular sieves.

Synthesis of naphtho [b] cyclopropene (II). In a 11 three necked flask equipped with a mechanical stirrer and nitrogen purging system was prepared a suspension of KO-t-Bu(112.2 g; 1 mol) in 400 ml of THF. 7,7-Dichloro-3,4benzobicyclo [4.1.0] hept-3ene [3] ($26.7 \mathrm{~g} ; 0.125 \mathrm{~mol}$) was then added at $20-25^{\circ} \mathrm{C}$ over a 30 min period and the mixture stirred for an additional 17.5 h . Water was added and the aqueous layer was extracted with pentane. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. The product [3] was then passed through a column of florisil (100-200 mesh) with pentane eluant. The product ($11.4 \mathrm{~g}, 65 \%$ yield) was obtained as a white solid, m.p. $86-87^{\circ} \mathrm{C}$.

Reaction of naphtho [b] cyclopropane with $\mathrm{Fe}_{2}(\mathrm{CO})_{y}$. A mixture of naphtho [b] cyclopropane ($0.70 \mathrm{~g} ; 0.005 \mathrm{~mol}$) and $\mathrm{Fe}_{2}(\mathrm{CO})_{9}(3.64 \mathrm{~g} ; 0.01 \mathrm{~mol})$ in 250 ml of degassed benzene was stirred under N_{2} at ambient temperature for 4 h , filtered through silica gel and washed with CHCl_{3}. The solvent was then removed under reduced pressure and the resulting material dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by thin-layer chromatography on silica gel (benzene eluent) giving 0.46 $\mathrm{g}(27 \%)$ of $\mathrm{I}, \mathrm{m} . \mathrm{p} .>\sim 140^{\circ} \mathrm{dec}$., and traces of the diketone V. Other products were detected but attempts to isolate them in pure form were unsuccessful.
X-ray crystallography. The general procedures, equipment and computer programs have been described elsewhere [4]. A needle crystal $0.35 \times 0.15 \times$ 0.17 mm was mounted in a glass capillary. The space group was established from systematic absences as $P 2_{1} / n$. The unit cell dimensions were found to be $a=$ $9.446(3), b=6.382(2), c=23.464(4) \AA, \beta=91.58(2)^{\circ} ; V=1414.0(8) \AA^{3}$.

Only those 1731 reflections for which $\left|F_{0}\right|^{2}>3 g \mid F_{0}{ }^{2} i$ were used to refine the structure anisotropically to final discrepancy indices of $R_{1}=0.064$ and $R_{2}=0.081$. A table of observed and calculated structure factors is available from the authors on request.

Fig. 1. An ORTEP drawing of the structure. The atoms of the $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}$ group are numbered in accord with standard shemical nomenclature. Each atom is represented by its thermal vibration ellipsoid drawn to enclose 50% of the electron density.

Results

The elemental composition of I was shown by high resolution mass spectroscopy. The parent ion $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Fe}(\mathrm{CO})_{s}{ }^{+}$is seen at $m / e 335.9731$ (calc. 335.9719) and other major fragments were $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Fe}(\mathrm{CO})_{4}{ }^{+}$at $m / e ~ 308, \mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Fe}(\mathrm{CO})_{3}{ }^{+}$at $m / e 280, \mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Fe}(\mathrm{CO})_{2}{ }^{+}$at $m / e ~ 252, \mathrm{C}_{11} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})^{+}$at $m / e 224$ and $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Fe}^{+}$at $m / e 196$ (base peak). The IR (KBr) spectrum showed terminal carbonyl absorp-

TABLE 1
FRACTIONAL COORDINATES FOR NON-HYDROGEN ATOMS

Atom	x	y	z
Fe	$0.2231(1)$	$0.2404(1)$	$0.4452(1)$
$O(1)$	$0.4879(5)$	$0.0226(9)$	$0.4202(2)$
$O(2)$	$0.2030(5)$	$0.0551(9)$	$0.5605(2)$
$O(3)$	$-0.0673(5)$	$0.4081(7)$	$0.4366(2)$
$O(4)$	$0.3701(5)$	$0.6306(8)$	$0.4833(3)$
$O(5)$	$0.1061(5)$	$-0.1796(7)$	$0.4358(2)$
$C(1)$	$0.0076(7)$	$-0.1310(10)$	$0.3189(3)$
$C(2)$	$0.0904(6)$	$0.0098(9)$	$0.3487(2)$
$C(3)$	$0.1355(6)$	$0.2001(9)$	$0.3234(2)$
$C(4)$	$0.0904(7)$	$0.2416(11)$	$0.2683(3)$
$C(5)$	$-0.0494(10)$	$0.1464(16)$	$0.1812(3)$
$C(6)$	$-0.1356(9)$	$0.0094(16)$	$0.1524(3)$
$C(7)$	$-0.1742(9)$	$-0.1815(15)$	$0.1771(3)$
$C(8)$	$-0.1281(8)$	$-0.2268(12)$	$0.2310(3)$
$C(9)$	$-0.0387(6)$	$-0.0909(10)$	$0.2628(3)$
$C(10)$	$0.0026(7)$	$0.1048(11)$	$0.2371(2)$
$C(11)$	$0.1296(6)$	$-0.0183(8)$	$0.4102(2)$
$C(12)$	$0.2269(8)$	$0.3422(11)$	$0.3596(3)$
$C(13)$	$0.3866(7)$	$0.1036(11)$	$0.4304(3)$
$C(14)$	$0.2098(6)$	$0.1290(10)$	$0.5168(3)$
$C(15)$	$0.0442(7)$	$0.3476(9)$	$0.4414(3)$
$C(16)$	$0.3113(6)$	$0.4849(11)$	$0.4684(3)$

TABLE 2
ANISOTROPIC THERMAL PARAMETERS ${ }^{a}$

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
	$96(1)$	$146(2)$	$15(1)$	$6(1)$	$-4(1)$	$-4(1)$
$O(1)$	$122(6)$	$357(18)$	$34(1)$	$43(1)$	$10(2)$	$-24(4)$
$O(2)$	$165(7)$	$418(19)$	$17(1)$	$37(10)$	$-1(2)$	$13(4)$
$O(3)$	$109(6)$	$219(12)$	$26(1)$	$27(7)$	$-6(2)$	$-9(3)$
$O(4)$	$171(8)$	$202(14)$	$44(2)$	$-21(9)$	$-31(3)$	$-18(4)$
$O(5)$	$155(6)$	$155(11)$	$17(1)$	$-10(7)$	$-11(2)$	$9(3)$
$C(1)$	$135(9)$	$172(17)$	$14(1)$	$-1(10)$	$-2(3)$	$6(4)$
$C(2)$	$109(7)$	$146(14)$	$13(1)$	$-1(9)$	$-3(2)$	$-4(3)$
$C(3)$	$110(7)$	$159(15)$	$14(1)$	$-2(8)$	$0(2)$	$4(3)$
$C(4)$	$151(9)$	$192(18)$	$16(1)$	$4(12)$	$3(3)$	$10(4)$
$C(5)$	$190(13)$	$379(31)$	$17(1)$	$46(16)$	$-2(3)$	$16(6)$
$C(6)$	$185(12)$	$516(35)$	$12(1)$	$56(17)$	$-15(3)$	$-16(6)$
$C(7)$	$178(11)$	$367(26)$	$18(2)$	$15(15)$	$-16(3)$	$-20(5)$
$C(8)$	$139(9)$	$234(22)$	$20(1)$	$12(11)$	$-7(3)$	$-13(5)$
$C(9)$	$118(8)$	$196(16)$	$14(1)$	$21(9)$	$-3(2)$	$-7(4)$
$C(10)$	$130(8)$	$251(18)$	$12(1)$	$22(10)$	$1(3)$	$1(4)$
$C(11)$	$99(7)$	$119(14)$	$16(1)$	$9(8)$	$-4(2)$	$-4(3)$
$C(12)$	$124(9)$	$191(18)$	$18(1)$	$-21(11)$	$-6(3)$	$8(4)$
$C(13)$	$108(8)$	$234(18)$	$18(1)$	$-21(10)$	$-3(3)$	$-7(4)$
$C(14)$	$-104(8)$	$238(19)$	$16(1)$	$32(10)$	$-5(3)$	$-6(4)$
$C(15)$	$109(8)$	$153(15)$	$15(1)$	$-9(9)$	$-6(2)$	$-7(4)$
$C(16)$	$106(8)$	$219(18)$	$23(2)$	$19(10)$	$-17(3)$	$-5(4)$

a The anisotropic temperature parameters are of the form
$10^{-4} \exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$.
tions at 2115, 2070 and $2020 \mathrm{~cm}^{-1}$ and a keto or bridging $\mathrm{C}=\mathrm{O}$ at $1618 \mathrm{~cm}^{-1}$ The proton NMR spectrum exhibits signals at $\delta 3.57\left(2 \mathrm{H},-\mathrm{CH}_{2}-\right)$ and 7.258.28 (6 H , aromatic) ppm.

Complete and unequivocal structural characterization of I was accomplished by X-ray single-crystal analysis. The crystallographic results are summarized in Fig. 1 which shows the molecular structure and the various Tables. Atomic positional parameters and temperature parameters are given in Tables 1, 2 and 3. Bond distances and angles are listed in Tables 4 and 5, respectively. The accuracy

TABLE 3
ATOMIC COORDINATES AND ISOTROPIC TEMPERATURE PARAMETERS FOR HYDROGEN ATOMS

Atom	x			
$H(1)$	$-0.026(7)$	$-0.240(10)$	0	Biso
$H(2)$	$0.109(8)$	$0.364(14)$	$0.338(3)$	$5(2)$
$H(3)$	$-0.012(14)$	$0.252(22)$	$0.171(7)$	$6(2)$
$H(4)$	$-0.175(7)$	$0.042(11)$	$0.116(3)$	$7(5)$
$H(5)$	$-0.238(8)$	$-0.265(12)$	$0.155(4)$	$5(2)$
$H(6)$	$-0.150(7)$	$-0.342(12)$	$0.246(3)$	$6(2)$
$H(7)$	$0.324(8)$	$0.337(12)$	$0.351(3)$	$4(2)$
$H(8)$	$0.193(8)$	$0.498(15)$	$0.358(3)$	$5(2)$

TABLE 4
BOND DISTANCES (\AA)

$F e-C(13)$	$1.815(7)$	$C(1)-C(2)$	$1.371(8)$
$F e-C(14)$	$1.844(7)$	$C(1)-C(9)$	$1.397(8)$
$F e-C(15)$	$1.823(7)$	$C(2)-C(3)$	$1.422(8)$
$F e-C(16)$	$2.831(7)$	$C(2)-C(11)$	$1.492(8)$
$\mathrm{Fe}-C(11)$	$2.112(7)$	$C(3)-C(4)$	$1.376(9)$
$F e-C(12)$	$1.120(7)$	$C(3)-C(12)$	$1.499(9)$
$O(1)-C(13)$	$1.133(8)$	$C(5)-C(10)$	$1.398(9)$
$O(2)-C(14)$	$1.125(7)$	$C(5)-C(10)$	$1.362(12)$
$O(3)-C(15)$	$1.132(8)$	$C(6)-C(7)$	$1.412(9)$
$O(4)-C(16)$	$1.215(7)$	$C(7)-C(8)$	$1.403(13)$
$O(5)-C(11)$		$C(8)-C(9)$	$1.358(10)$
	$0.89(7)$	$C(9)-C(10)$	$1.410(9)$
$C(1)-H(1)$	$0.86(8)$		
$C(4)-H(2)$	$0.80(14)$		
$C(5)-H(3)$	$0.94(7)$		
$C(6)-H(4)$	$0.95(8)$		
$C(7)-H(5)$	$0.84(7)$		
$C(8)-H(6)$	$0.95(7)$		
$C(14)-H(7)$	$1.05(9)$		
$C(12)-H(8)$			

of the structure is indicated by a comparison of the C-C distances in the naphthalene group with the accepted best values for the naphthalene molecule [5].

The five-membered chelate ring deviates from planarity with a bend along the $\mathrm{C}(11) \cdots \mathrm{C}(12)$ line of 15°. About half of the difference in the $\mathrm{Fe}-\mathrm{CH}_{2}$ and $\mathrm{Fe}-\mathrm{C}(\mathrm{O})$ bond lengths, $\sim 0.07 \AA$ can be attributed to the difference in covalent radii for $s p^{2}$ and $s p^{3}$ hybridized carbon atoms. The rest probably results from a slight π interaction of Fe with the CO group.

TABLE 5
BOND ANGLES (Deg)

C(11)-Fe-C(12)	83.4(2)	C(2)-C(1)-C(9)	$121.3(6)$
C(11)-Fe-C(13)	84.0(2)	$C(1)-C(2)-C(3)$	$121.4(5)$
C(11)-Fe-C(16)	173.3(3)	$C(1)-C(2)-C(11)$	122.6 (5)
C(11)-Fe-C(15)	83.9(2)	C(2)-C(3)-C(4)	117.8(6)
C(11)-Fe-C(14)	90.9(3)	$C(2)-C(3)-C(12)$	$117.1(5)$
C(12)-Fe-C(13)	86.0(3)	C(3)-C(4)-C(10)	$122.5(6)$
C(12)-Fe-C(16)	90.0(3)	$C(6)-C(5)-C(10)$	$121.9(9)$
C(12)-Fe-C(15)	83.0(3)	C(5)-C(6)-C(7)	120.7(7)
C(12)-Fe-C(14)	174.2(3)	C(6)-C(7)-C(8)	119.4(8)
C(13)-Fe-C(16)	94.8(3)	C(7)-C(8)-C(9)	122.3(8)
$C(13)-\mathrm{Fe}$ C(15)	164.4(3)	C(1)-C(9)-C(8)	$123.5(6)$
C(13)-Fe-C(14)	93.9(3)	$C(1)-C(9)-C(10)$	118.1(6)
$C(14)-\mathrm{Fe}$ C(15)	96.2(3)	C(4)-C(10)-C(5)	123.8(7)
C(14)-Fe-C(16)	95.7(3)	C(4)-C(10)-C(9)	$118.9(5)$
C(15)-Fe-C(14)	96.0(3)	Fe-C(11)-C(2)	$112.7(4)$
Fe-C(13)-O(1)	178.2(6)	Fe-C(11)-O(5)	124.8(4)
Fe-C(14)-O(2)	178.1 (6)	$C(2)-C(11)-O(5)$	122.4(5)
Fe-C(15)-O(3)	176.5(5)	Fe-C(12)-C(3)	109.1(4)
Fe-C(16)-O(4)	177.3(5)		

Discussion

The remarkable stability of zero-valent iron compounds with two Fe-C σ bonds such as those present in I is at first surprising. The stability is probably kinetic in origin, since metal-alkyl decomposition pathways such as carboncarbon bond reorganization or β-elimination are not available [6]. Compound III [1b], which results from the reaction of $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ and dibenzosemibullvalene, is to our knowledge the only other well characterized material with two Fe-C σ bonds, and it also exhibits remarkable chemical and thermal stability. Very recently a compound assumed to have structure IV has been described but X-ray

(III)

(IV)
proof of structure was not yet available [2].
Finally, structures similar to the one reported here have been proposed in several recent reports by Collman and his co-workers [7] as intermediates in their synthesis of aliphatic ketones from $\mathrm{Na}_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ and alkyl halides. A similar decomposition of I would give naphtho [b] cyclobutenone. Although this compound was not observed, its dimer V was produced in low yield. In fact, I might owe its stability to the difficulty in forming the four-membered ring. The origin of diketone V is not clear; however, the thermal stability of I would seem to eliminate it as a precursor of V.

(V)

Acknowledgements

We are grateful to the Robert A. Welch Foundation for support under Grants A494 and C490.

References

1 (a) S. Sarel, R. Ben-Shoshan and B. Krison, J. Amer. Chem. Soc., 87 (1965) 2517; R. Ben-Shoshan and S. Sarel, Chem. Commun., (1969) 883; R. Yictor, R. Ben-Shoshan and S. Sarel, Tetrahedron Lett.,
(1970) 4253; (b) R.M. Moriarty, R.M. Chem, K.N. Yen, J.L. Flippen and J. Karle, J. Amer. Chem. Soc., 94 (1972) 8944; (c) R.M. Moriarty, C.L. Yeh and K.C. Ramey, ibid., 93 (1971) 6709; (d) R. Noyori, T. Nishimura and H. Takya, Chem. Commun., (1969) 89; (e) T. Shirafuii and H. Nozakr, Tetrahedron, 29 (1973) 77; (f) C.H. Depuy, V.M. Kobal and D.H. Gibson, J. Organometal. Chem., 13 (1958) 266; (g) W.E. Billups, L.P. Lin and O.A. Gansow, Angew. Chem., 84 (1972) 684; Angew. Chem. Int. Ed., 11 (1972) 522; (h) W.E. Bilups, L.P. Lin and B.A. Baker, J. Organometal, Chem., 61 (1973) C55.

2 V. Heil, B.F.G. Johnson, J. Lewis and D.J. Thompson, J. Chem. Soc. Chem. Commun., (1974) 270.
3 W.E. Billups and W.Y. Chow, J. Amer. Chem. Soc., 95 (1973) 4099.
4 F.A. Cotton and J.M. Troup, J. Organometal. Chem., 77 (1974) 369.
5 D.W.J. Cruickshank and R.A. Sparks, Proc. Roy. Soc., A, 258 (1960) 270.
6 F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 3xd ed., Wiley-Interscience, New York, N.Y., 1972, p. 756-761.

7 J.P. Collman, S.R. Winter and D.R. Clark, J. Amer. Chem. Soc., 94 (1972) 1788; M.P. Cooke, Jr., ibid., 92 (1970) 7080; W.O. Siegl and J.P. Collman, ibid., 94 (1972) 2516.

