Journal of Organometallic Chemistry, 102 (1975) 345-351 © Elsevier Sequoia S.A., Lausanne - Printed ir. The Netherlands

SYNTHESIS AND STRUCTURE PROOF OF A NEW RING SYSTEM FROM THE REACTION OF DIIRONNONACARBONYL AND NAPHTHO[b]-CYCLOPROPENE

F.A. COTTON* and J.M. TROUP

Department of Chemistry, Texas A & M University, College Station, Texas 77843 (U.S.A.) W.E. BILLUPS^{*}, L.P. LIN and C.V. SMITH Department of Chemistry, Rice University, Houston, Texas 77001 (U.S.A.) (Received January 28th, 1975)

Summary

The reaction of naphtho [b] cyclopropene with Fe₂(CO)₉ in CH₂Cl₂ at 25°C yields a yellow crystalline product, I, in 27% yield. The identity and structure of I were ascertained by spectroscopic, and especially X-ray crystallographic means. The product can be formally regarded as resulting from the addition of an Fe-C bond of $Fe(CO)_5$ across one edge of the three-membered ring of naphtho[b]cyclopropene. Thus, the iron atom is coordinated in a distorted octahedral fashion by four CO groups, the carbon atom of a carbonyl group at the 2 position of naphthalene and the carbon atom of a methylene group at the 3 position of naphthalene. The product, $(C_{12}H_8O)Fe(CO)_4$, crystallizes in space group $P2_1/n$. The unit cell contains four molecules and has the dimensions a = 9.446(3), b =6.383(2), c = 23.464(4) Å, $\beta = 91.58(2)^{\circ}$. Using a total of 1731 reflections for which $|F_0|^2$ exceeded 3 times the standard deviation of $|F_0|^2$ the structure was solved and refined to convergence using anisotropic temperature factors for all atoms to give discrepency indices of $R_1 = 0.064$ and $R_2 = 0.081$. The C–C distances in the naphthalene moiety agree very well with known values for naphthalene itself. The four Fe-CO distances are 1.815, 1.823, 1.831 and 1.844 Å, the Fe–CH₂ distance is 2.112(7) Å and the Fe–C(O) ring distance is 2.035(5) Å.

Introduction

The reactions of the iron carbonyls with strained ring systems has already been the subject of much study [1,2]. We report here the synthesis and structure of the novel product I, a compound of considerable intrinsic interest, which results from the reaction of $Fe_2(CO)_9$ with naphtho[b]cyclopropene (II) [3].

۰,

Experimental

General. All melting points are uncorrected. Infrared spectra were recorded on a Beckman IR8 spectrometer as KBr plates. Proton magnetic resonance spectra were obtained with a Perkin—Elmer R-12 spectrometer in CCl_4 or $DCCl_3$ solution and results are expressed in parts per million downfield from internal TMS. Mass spectra were obtained with a double focusing C.E.C. 21-110B mass spectrometer.

Tetrahydrofuran was distilled from sodium-benzophenone ketyl immediately before use. Benzene was distilled from sodium wire and stored over 4A molecular sieves.

Synthesis of naphtho[b] cyclopropene (II). In a 1 l three necked flask equipped with a mechanical stirrer and nitrogen purging system was prepared a suspension of KO-t-Bu(112.2 g; 1 mol) in 400 ml of THF. 7,7-Dichloro-3,4benzobicyclo[4.1.0] hept-3-ene [3] (26.7 g; 0.125 mol) was then added at 20-25°C over a 30 min period and the mixture stirred for an additional 17.5 h. Water was added and the aqueous layer was extracted with pentane. The combined organic layers were dried over Na₂SO₄ and the solvent removed in vacuo. The product [3] was then passed through a column of florisil (100-200 mesh) with pentane eluant. The product (11.4 g, 65% yield) was obtained as a white solid, m.p. 86-87°C.

Reaction of naphtho[b] cyclopropane with $Fe_2(CO)_9$. A mixture of naphtho[b] cyclopropane (0.70 g; 0.005 mol) and $Fe_2(CO)_9$ (3.64 g; 0.01 mol) in 250 ml of degassed benzene was stirred under N₂ at ambient temperature for 4 h, filtered through silica gel and washed with CHCl₃. The solvent was then removed under reduced pressure and the resulting material dissolved in CH₂Cl₂ and purified by thin-layer chromatography on silica gel (benzene eluent) giving 0.46 g (27%) of I, m.p. $> \sim 140^\circ$ dec., and traces of the diketone V. Other products were detected but attempts to isolate them in pure form were unsuccessful.

X-ray crystallography. The general procedures, equipment and computer programs have been described elsewhere [4]. A needle crystal $0.35 \times 0.15 \times$ 0.17 mm was mounted in a glass capillary. The space group was established from systematic absences as $P2_1/n$. The unit cell dimensions were found to be a =9.446(3), b = 6.382(2), c = 23.464(4) Å, $\beta = 91.58(2)^\circ$; V = 1414.0(8) Å³.

Only those 1731 reflections for which $|F_0|^2 > 3\sigma |F_0^2|$ were used to refine the structure anisotropically to final discrepancy indices of $R_1 = 0.064$ and $R_2 = 0.081$. A table of observed and calculated structure factors is available from the authors on request.

Fig. 1. An ORTEP drawing of the structure. The atoms of the $C_{12}H_8O$ group are numbered in accord with standard chemical nomenclature. Each atom is represented by its thermal vibration ellipsoid drawn to enclose 50% of the electron density.

Results

The elemental composition of I was shown by high resolution mass spectroscopy. The parent ion $C_{11}H_8Fe(CO)_5^+$ is seen at m/e 335.9731 (calc. 335.9719) and other major fragments were $C_{11}H_8Fe(CO)_4^+$ at m/e 308, $C_{11}H_8Fe(CO)_3^+$ at m/e 280, $C_{11}H_8Fe(CO)_2^+$ at m/e 252, $C_{11}H_8Fe(CO)^+$ at m/e 224 and $C_{11}H_8Fe^+$ at m/e 196 (base peak). The IR (KBr) spectrum showed terminal carbonyl absorp-

TABLE 1 FRACTIONAL COORDINATES FOR NON-HYDROGEN ATOMS

Atom	x	У	z	
Fe	0.2231(1)	0.2404(1)	0.4452(1)	
0(1)	0.4879(5)	0.0226(9)	0.4202(2)	
0(2)	0.2030(5)	0.0551(9)	0.5605(2)	
O(3)	-0.0673(5)	0.4081(7)	0.4366(2)	
0(4)	0.3701(5)	0.6306(8)	0.4833(3)	
O(5)	0.1061(5)	-0.1796(7)	0.4358(2)	
C(1)	0.0076(7)	-0.1310(10)	0.3189(3)	
C(2)	0.0904(6)	0.0098(9)	0.3487(2)	
C(3)	0.1355(6)	0.2001(9)	0.3234(2)	
C(4)	0.0904(7)	0.2416(11)	0.2683(3)	
C(5)	-0.0494(10)	0.1464(16)	0.1812(3)	
C(6)	-0.1356(9)	0.0094(16)	0.1524(3)	
C(7)	-0.1742(9)	-0.1815(15)	0.1771(3)	
C(8)	-0.1281(8)	-0.2268(12)	0.2310(3)	
C(9)	-0.0387(6)	-0.0909(10)	0.2628(3)	
C(10)	0.0026(7)	0.1048(11)	0.2371(2)	
C(11)	0.1296(6)	0.0183(8)	0.4102(2)	
C(12)	0.2269(8)	0.3422(11)	0.3596(3)	
C(13)	0.3866(7)	0.1036(11)	0.4304(3)	
C(14)	0.2098(6)	0.1290(10)	0.5168(3)	
C(15)	0.0442(7)	0.3476(9)	0.4414(3)	
C(16)	0.3113(6)	0.4849(11)	0.4684(3)	

	β11	β22	β33	β ₁₂	β ₁₃	β23
	96(1)	146(2)	15(1)	6(1)		4(1)
0(1)	_ 122(6)	357(18)	34(1)	43(1)	10(2)	-24(4)
0(2)	165(7)	418(19)	17(1)	37(10)	-1(2)	13(4)
O(3)	109(6)	219(12)	26(1)	27(7)	-6(2)	9(3)
0(4)	171(8)	202(14)	44(2)	-21(9)	-31(3)	
O(5)	155(6)	155(11)	17(1)	-10(7)		9(3)
C(1)	135(9)	172(17)	14(1)	-1(10)	-2(3)	6(4)
C(2)	109(7)	146(14)	13(1)	-1(9)	-3(2)	-4(3)
C(3)	110(7)	159(15)	14(1)	2(8)	0(2)	4(3)
C(4)	151(9)	192(18)	16(1)	4(12)	3(3)	10(4)
C(5)	190(13)	379(31)	17(1)	46(16)	-2(3)	16(6)
C(6)	185(12)	516(35)	12(1)	56(17)	—15(3)	—16(6)
C(7)	178(11)	367(26)	18(2)	15(15)	-16(3)	-20(5)
C(8)	139(9)	234(22)	20(1)	12(11)	-7(3)	-13(5)
C(9)	118(8)	196(16)	14(1)	21(9)	3(2)	7(4)
C(10)	130(8)	251(18)	12(1)	22(10)	1(3)	1(4)
C(11)	99(7)	119(14)	16(1)	9(8)	-4(2)	-4(3)
C(12)	124(9)	191(18)	18(1)	-21(11)	6(3)	8(4)
C(13)	108(8)	234(18)	18(1)	21(10)	3(3)	7(4)
C(14)	-104(8)	238(19)	16(1)	32(10)	5(3)	6(4)
C(15)	109(8)	153(15)	15(1)	9(9)	6(2)	-7(4)
C(16)	106(8)	219(18)	23(2)	19(10)	-17(3)	-5(4)

ANISOTROPIC THERMAL PARAMETERS^a

^a The anisotropic temperature parameters are of the form

 $10^{-4} \exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)].$

tions at 2115, 2070 and 2020 cm⁻¹ and a keto or bridging C=O at 1618 cm⁻¹ The proton NMR spectrum exhibits signals at δ 3.57 (2H, -CH₂-) and 7.25-8.28 (6H, aromatic) ppm.

Complete and unequivocal structural characterization of I was accomplished by X-ray single-crystal analysis. The crystallographic results are summarized in Fig. 1 which shows the molecular structure and the various Tables. Atomic positional parameters and temperature parameters are given in Tables 1, 2 and 3. Bond distances and angles are listed in Tables 4 and 5, respectively. The accuracy

TABLE 3

ATOMIC COORDINATES AND ISOTROPIC TEMPERATURE PARAMETERS FOR HYDROGEN ATOMS

Atom	x	У	z	B _{iso}	
H(1)	-0.026(7)	-0.240(10)	0.338(3)	5(2)	
H(2)	0.109(8)	0.364(14)	0.256(3)	6(2)	
H(3)	-0.012(14)	0.252(22)	0.171(7)	7(5)	
H(4)	-0.175(7)	0.042(11)	0.116(3)	5(2)	
H(5)	0.238(8)	-0.265(12)	0.155(4)	6(2)	
H(6)	-0.150(7)	0.342(12)	0.246(3)	4(2)	
H(7)	0.324(8)	0.337(12)	0.351(3)	5(2)	
H(8)	0.193(8)	0.498(15)	0.358(3)	7(2)	

TABLE 2

TABLE 4

Fe-C(13)	1.815(7)	C(1)-C(2)	1.371(8)	
Fe-C(14)	1.844(7)	C(1)-C(9)	1.397(8)	
Fe-C(15)	1.823(7)	C(2)-C(3)	1.422(8)	
Fe-C(16)	1.831(7)	C(2)C(11)	1.492(8)	
Fe-C(11)	2.035(5)	C(3)-C(4)	1.376(9)	
Fe-C(12)	2.112(7)	C(3)-C(12)	1.499(9)	
O(1)-C(13)	1.120(7)	C(4)-C(10)	1.398(9)	
O(2)-C(14)	1.133(8)	C(5)-C(6)	1.362(12)	
O(3)-C(15)	1.125(7)	C(5)-C(10)	1.412(9)	
O(4)-C(16)	1.132(8)	C(6)-C(7)	1.403(13)	
O(5)-C(11)	1.215(7)	C(7)C(8)	1.358(10)	
		C(8)-C(9)	1.410(9)	
C(1)-H(1)	0.89(7)	C(9)-C(10)	1.446(9)	
C(4)—H(2)	0.86(8)			
C(5)—H(3)	0.80(14)			
C(6)-H(4)	0.94(7)			
C(7)-H(5)	0.95(8)			
C(8)—H(6)	0.84(7)			
C(14)-H(7)	0.95(7)			
C(12)-H(8)	1.05(9)			

of the structure is indicated by a comparison of the C—C distances in the naphthalene group with the accepted best values for the naphthalene molecule [5].

The five-membered chelate ring deviates from planarity with a bend along the $C(11) \cdot \cdot \cdot C(12)$ line of 15°. About half of the difference in the Fe—CH₂ and Fe—C(O) bond lengths, ~0.07 Å can be attributed to the difference in covalent radii for sp^2 and sp^3 hybridized carbon atoms. The rest probably results from a slight π interaction of Fe with the CO group.

TABLE 5

BOND ANGLES (Deg)

C(11)-Fe-C(12)	83.4(2)	C(2)C(1)C(9)	121.3(6)	
C(11)—Fe—C(13)	84.0(2)	C(1)-C(2)-C(3)	121.4(5)	
C(11)—Fe—C(16)	173.3(3)	C(1)-C(2)-C(11)	122.6(5)	
C(11)—Fe—C(15)	83.9(2)	C(2)-C(3)-C(4)	117.8(6)	
C(11)—Fe—C(14)	90.9(3)	C(2)-C(3)-C(12)	117.1(5)	
C(12)-Fe-C(13)	86.0(3)	C(3)C(4)C(10)	122.5(6)	
C(12)-Fe-C(16)	90.0(3)	C(6)C(5)C(10)	121.9(9)	
C(12)-Fe-C(15)	83.0(3)	C(5)-C(6)-C(7)	120.7(7)	
C(12)-Fe-C(14)	174.2(3)	C(6)-C(7)-C(8)	119.4(8)	
C(13)—Fe—C(16)	94.8(3)	C(7)-C(8)-C(9)	122.3(8)	
C(13)FeC(15)	164.4(3)	C(1)C(9)C(8)	123.5(6)	
C(13)FeC(14)	93.9(3)	C(1)C(9)C(10)	118.1(6)	
C(14)-Fe-C(15)	96.2(3)	C(4)-C(10)-C(5)	123.8(7)	
C(14)—Fe—C(16)	95.7(3)	C(4)-C(10)-C(9)	118.9(5)	
C(15)-Fe-C(14)	96.0(3)	Fe-C(11)-C(2)	112.7(4)	-
Fe-C(13)-O(1)	178.2(6)	Fe-C(11)-O(5)	124.8(4)	
Fe-C(14)-O(2)	178.1(6)	C(2)C(11)O(5)	122.4(5)	
Fe-C(15)-O(3)	176.5(5)	FeC(12)C(3)	109.1(4)	
Fe-C(16)-O(4)	177.3(5)		· · ·	

Discussion

The remarkable stability of zero-valent iron compounds with two Fe—C σ bonds such as those present in I is at first surprising. The stability is probably kinetic in origin, since metal—alkyl decomposition pathways such as carbon—carbon bond reorganization or β -elimination are not available [6]. Compound III [1b], which results from the reaction of Fe₂(CO)₉ and dibenzosemibullvalene, is to our knowledge the only other well characterized material with two Fe—C σ bonds, and it also exhibits remarkable chemical and thermal stability. Very recently a compound assumed to have structure IV has been described but X-ray

proof of structure was not yet available [2].

Finally, structures similar to the one reported here have been proposed in several recent reports by Collman and his co-workers [7] as intermediates in their synthesis of aliphatic ketones from $Na_2Fe(CO)_4$ and alkyl halides. A similar decomposition of I would give naphtho[b] cyclobutenone. Although this compound was not observed, its dimer V was produced in low yield. In fact, I might owe its stability to the difficulty in forming the four-membered ring. The origin of diketone V is not clear; however, the thermal stability of I would seem to eliminate it as a precursor of V.

(V)

Acknowledgements

We are grateful to the Robert A. Welch Foundation for support under Grants A494 and C490.

References

1 (a) S. Sarel, R. Ben-Shoshan and B. Krison, J. Amer. Chem. Soc., 87 (1965) 2517; R. Ben-Shoshan and S. Sarel, Chem. Commun., (1969) 883; R. Victor, R. Ben-Shoshan and S. Sarel, Tetrahedron Lett.,

350

(1970) 4253; (b) R.M. Moriarty, R.M. Chem, K.N. Yen, J.L. Flippen and J. Karle, J. Amer. Chem. Soc., 94 (1972) 8944; (c) R.M. Moriarty, C.L. Yeh and K.C. Ramey, ibid., 93 (1971) 6709; (d) R. Noyori, T. Nishimura and H. Takya, Chem. Commun., (1969) 89; (e) T. Shirafuji and H. Nozaka, Tetrahedron, 29 (1973) 77; (f) C.H. Depuy, V.M. Kobal and D.H. Gibson, J. Organometal. Chem., 13 (1958) 266; (g) W.E. Billups, L.P. Lin and O.A. Gansow, Angew. Chem., 84 (1972) 684; Angew. Chem. Int. Ed., 11 (1972) 522; (h) W.E. Billups, L.P. Lin and B.A. Baker, J. Organometal. Chem., 61 (1973) C55.

- 2 V. Heil, B.F.G. Johnson, J. Lewis and D.J. Thompson, J. Chem. Soc. Chem. Commun., (1974) 270.
- 3 W.E. Billups and W.Y. Chow, J. Amer. Chem. Soc., 95 (1973) 4099.
- 4 F.A. Cotton and J.M. Troup, J. Organometal. Chem., 77 (1974) 369.
- 5 D.W.J. Cruickshank and R.A. Sparks, Proc. Roy. Soc., A, 258 (1960) 270.
- 6 F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 3rd ed., Wiley-Interscience, New York, N.Y., 1972, p. 756-761.
- 7 J.P. Collman, S.R. Winter and D.R. Clark, J. Amer. Chem. Soc., 94 (1972) 1788; M.P. Cooke, Jr., ibid., 92 (1970) 7080; W.O. Siegl and J.P. Collman, ibid., 94 (1972) 2516.